

Ground Operations of Liquid hydrogen Aircraft

Project duration: 48 months (May 2024-April 2028)

EU contribution: € 10 800 156,97 (via the European Climate, Infrastructure and Environment Executive Agency - CINEA)

UK Research and Innovation contribution: £1816417 (via the Horizon Europe Guarantee Scheme)

Coordinator: Airbus SAS

Website

LinkedIn

The GOLIAT project develops LH2 technologies and conducts studies and demonstrations to overcome the current barriers to hydrogen-powered aviation and aiport operations.

In the near future, hydrogen will be a solution to decarbonise short- and medium-haul aviation. However, airport infrastructure and operations have to be adapted to the challenges posed by the introduction of hydrogen aircraft.

In this context, GOLIAT will focus on three pillars:

- 1. Development and tests of a large-scale LH2 refueller prototype for aircraft
- 2. Advancing the readiness level of airports with ground demonstrations of LH2 aircraft operations at three airports
- 3. Progress on safety, regulations and standardisation aspects as well as technoeconomics assessment of hydrogen operations at airports

Picture credit: Airbus

WHAT

- Development and tests of a LH2 refueller prototype, scaled-up for future large commercial hydrogen aircraft
- Ground operations demonstration with small LH2-powered aircraft (HY4) at three European airports to progress on LH2 handling and regulations at airports
- LH2 refuelling standardisation and certification preliminary framework & technoeconomic assessment

Picture credit: European Commission

WHY

The GOLIAT consortium partners share the ambition to enable a commercially viable, hydrogen-powered commercial aircraft to enter service.

However, existing LH2 technologies are tailored for specific industrial or mobility contexts. They are limited in capacity and performance and expensive for the aviation market.

Additionally, there's an insufficient understanding of the operational, regulatory and economic framework that will enable handling large quantities of hydrogen at airports.

Picture credit: Budapest Airport

WHO

To achieve the project objectives, the GOLIAT partnership brings together:

- An aircraft manufacturer (Airbus)
- Technology providers (Chart Industries, H2FLY)
- Universities (TU Delft, Leibniz University Hannover)
- Airport operators (Vinci Airports, Schiphol Airport, Rotterdam Airport, Stuttgart Airport, Budapest Airport)

Picture credit: Stuttgart Airport

WHERE

Large-scale demonstration of LH2 ground operations will be implemented at three European airports:

- Stuttgart (2026)
- Rotterdam (2026)
- Lyon (2027)

The three iterative demonstrations will provide insights on how small aircraft and vehicles using hydrogen can be refuelled and safely operated on airports.

Additionally, the LH2 refueller will be demonstrated at the Airbus premises.

EXPECTED RESULTS

Models

Technologies

Demonstrations

Framework

Assessment of hydrogen demand at airports in Europe and globally

Hydrogen supply chain model and costs evaluation

H2-aviation airport ground operations and support equipment allocation

Innovative high-flow ground-based refuelling systems for liquid hydrogen

Competitive aircraft-based hydrogen refuel technologies

Target:

- 2 to 4 tons LH2 mobile refueller
- Refuel flow rates of 5-6 tons per hour to ensure competitive turnaround time

Demonstration of hydrogenpowered aircraft ground operations at three EU airports to provide lessons learnt for the future operations at airports, including:

- parking
- taxiing
- manoeuvring
- refuelling

Guidelines covering:

- Standardisation: future LH2 mobile refuelling, storage and supply equipment and its operation
- Certification: LH2
 refuelling
 procedures, ground
 equipment and
 systems at airports

TIMELINE

- Feasibility study for LH2 aircraft ground operations
- Techno-economic study scenarios available
- Requirements for the characteristics of future LH2 refueller
- LH2 refueller components and A/C H2 transfer and tank systems CDR

2026

- Refueller Factory Acceptance Test
- Aircraft-based LH2 integrated transfer system validated
- LH2 aircraft ground operations demo n° 3 (Lyon)
- Impact matrix of H2 aircraft operations at airport available

May: project start

2025

- LH2 aircraft ground operations demo n° 1(Stuttgart)
- Refueller CDR
- LH2 aircraft ground operations demo n° 2 (Rotterdam)
- LH2 tank and test infrastructure validated

2027

2028

2024

- Demonstration of LH2 refueling technologies
- Techno-economic model & H2 aircraft refuelling equipment standardisation and certification guidelines

IMPACT

In the medium and long term, the GOLIAT project will:

De-risk the introduction of future large hydrogen-powered commercial aircraft, which has the potential to greatly reduce emissions from air transport.

Bring a major competitive edge to European industry by developing the next-generation of LH2 refuellers tailored for aviation.

Contribute to the social acceptance of LH2 for aviation and other applications through ground demonstrations.

Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

UK Research and Innovation